Web of Science: 92 cites, Scopus: 100 cites, Google Scholar: cites
Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes
Bahn, Michael. (Universität Innsbruck. Institut für Ökologie)
Reichstein, Markus (Max Planck Institute for Biogeochemistry)
Davidson, Eric A. (Woods Hole Research Center (Woods Hole, Mass.))
Grünzweig, José (Universitah ha-Ivrit bi-Yerushalayim. Robert H. Smith Faculty of Agriculture, Food and Environment)
Jung, Martin (Max Planck Institute for Biogeochemistry)
Carbone, Mariah S. (University of California. Department of Geography)
Epron, Daniel (Université de Lorraine)
Misson, Laurent (Centre National de la Recherche Scientifique (França))
Nouvellon, Yann (Centre de coopération internationale en recherche agronomique pour le développement)
Roupsard, Olivier (Centre de coopération internationale en recherche agronomique pour le développement)
Savage, Kathleen (Woods Hole Research Center (Woods Hole, Mass.))
Trumbore, Susan E. (Max Planck Institute for Biogeochemistry)
Gimeno, Cristina (Centro de Estudios Ambientales del Mediterráneo)
Curiel Yuste, Jorge (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Tang, Jianwu (Marine Biological Laboratory (Woods Hole, Mass.). Ecosystems Center)
Vargas, Rodrigo (University of California, Berkeley. Department of Environmental Science, Policy & Management)
Janssens, Ivan (Universiteit Antwerpen. Departement Biologie)

Data: 2010
Resum: Soil respiration (SR) constitutes the largest flux of CO₂ from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (〖SR〗_MAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q₁₀). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure 〖SR〗_MAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO₂ emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.
Ajuts: European Commission 208516
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Biomes ; Soil respiration ; Temperature ; Vegetation
Publicat a: Biogeosciences, Vol. 7 Issue 7 (July 2010) , p. 2147-2157, ISSN 1726-4189

DOI: 10.5194/bg-7-2147-2010
PMID: 23293656


11 p, 557.4 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2015-04-16, darrera modificació el 2023-12-24



   Favorit i Compartir