Web of Science: 16 citas, Scopus: 16 citas, Google Scholar: citas
Equigeneric and equisingular families of curves on surfaces
Dedieu, Thomas (Université Paul Sabatier (França). Institut de Mathématiques de Toulouse)
Sernesi, E. (Universitá Roma Tre. Dipartimento di Matematica e Fisica)

Fecha: 2017
Resumen: We investigate the following question: let C be an integral curve contained in a smooth complex algebraic surface X; is it possible to deform C in X into a nodal curve while preserving its geometric genus? We armatively answer it in most cases when X is a Del Pezzo or Hirzebruch surface (this is due to Arbarello and Cornalba, Zariski, and Harris), and in some cases when X is a K3 surface. Partial results are given for all surfaces with numerically trivial canonical class. We also give various examples for which the answer is negative.
Derechos: Tots els drets reservats.
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Families of singular curves on algebraic surfaces ; Equigeneric and equisingular deformations ; Nodal curves
Publicado en: Publicacions matemàtiques, Vol. 61 Núm. 1 (2017) , p. 175-212 (Articles) , ISSN 2014-4350

Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/316083
DOI: 10.5565/PUBLMAT_61117_07


38 p, 552.6 KB

El registro aparece en las colecciones:
Artículos > Artículos publicados > Publicacions matemàtiques
Artículos > Artículos de investigación

 Registro creado el 2016-12-19, última modificación el 2022-09-04



   Favorit i Compartir