Web of Science: 38 citations, Scopus: 37 citations, Google Scholar: citations,
Thermal transport in suspended silicon membranes measured by laser-induced transient gratings
Vega-Flick, Alejandro (CINVESTAV-Unidad Mérida)
Duncan, Ryan A. (Massachusetts Institute of Technology. Department of Chemistry)
Eliason, Jeffrey Kristian (Massachusetts Institute of Technology. Department of Chemistry)
Cuffe, John (Massachusetts Institute of Technology)
Johnson, Jeremiah A. (Massachusetts Institute of Technology. Department of Chemistry)
Peraud, Jean-Philippe M. (Massachusetts Institute of Technology)
Zeng, Lingping (Massachusetts Institute of Technology)
Lu, Zhengmao (Massachusetts Institute of Technology)
Maznev, Alex A. (Massachusetts Institute of Technology. Department of Chemistry)
Wang, Evelyn N. (Massachusetts Institute of Technology)
Alvarado Gil, Juan José (CINVESTAV-Unidad Mérida)
Sledzinska, Marianna (Institut Català de Nanociència i Nanotecnologia)
Sotomayor Torres, Clivia M. (Institut Català de Nanociència i Nanotecnologia)
Chen, Gang (Massachusetts Institute of Technology)
Nelson, Keith A. (Massachusetts Institute of Technology. Department of Chemistry)

Date: 2016
Abstract: Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both "solid" and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.
Grants: Ministerio de Economía y Competitividad SEV-2013-0295
Ministerio de Economía y Competitividad FIS2015-70862-P
Ministerio de Ciencia e Innovación CSD2010-00044
European Commission 309150
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Analysis of measurements ; Diffusive transport ; Direct observations ; Measurement process ; Noncontact measurements ; Silicon nano structures ; Suspended membranes ; Transient thermal grating
Published in: AIP advances, Vol. 6, Issue 12 (December 2016) , art. 121903, ISSN 2158-3226

DOI: 10.1063/1.4968610


14 p, 6.2 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-06-03, last modified 2022-09-06



   Favorit i Compartir