Web of Science: 24 citations, Scopus: 26 citations, Google Scholar: citations
High-Temperature Electrical and Thermal Aging Performance and Application Considerations for SiC Power DMOSFETs
Hamilton, Dean P. (University of Warwick)
Jennings, M. R. (University of Warwick)
Perez-Tomas, Amador (Institut Català de Nanociència i Nanotecnologia)
Russell, Stephen A. O. (University of Warwick)
Hindmarsh, Steven A. (University of Warwick)
Fisher, C. A. (University of Warwick)
Mawby, Philip A. (University of Warwick)

Date: 2017
Abstract: The temperature dependence and stability of three different commercially-available unpackaged SiC Dmosfets have been measured. On-state resistances increased to 6 or 7 times their room temperature values at 350 °C. Threshold voltages almost doubled after tens of minutes of positive gate voltage stressing at 300 °C, but approached their original values again after only one or two minutes of negative gate bias stressing. Fortunately, the change in drain current due to these threshold instabilities was almost negligible. However, the threshold approaches zero volts at high temperatures after a high temperature negative gate bias stress. The zero gate bias leakage is low until the threshold voltage reduces to approximately 150 mV, where-after the leakage increases exponentially. Thermal aging tests demonstrated a sudden change from linear to nonlinear output characteristics after 24-100 h air storage at 300 °C and after 570-1000 h in N2 atmosphere. We attribute this to nickel oxide growth on the drain contact metallization which forms a heterojunction p-n diode with the SiC substrate. It was determined that these state-of-the-art SiC mosfet devices may be operated in real applications at temperatures far exceeding their rated operating temperatures.
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Temperature measurement ; Silicon carbide ; Logic gates ; Threshold voltage ; Temperature ; Performance evaluation ; Current measurement
Published in: IEEE transactions on power electronics, Vol. 32, Issue 10 (October 2017) , p. 7967-7979, ISSN 0885-8993

DOI: 10.1109/TPEL.2016.2636743


Postprint
15 p, 1.3 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-12-20, last modified 2022-09-10



   Favorit i Compartir