Web of Science: 103 cites, Scopus: 108 cites, Google Scholar: cites,
Roadmap on STIRAP applications
Bergmann, Klaas (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum OPTIMAS (Germany))
Nägerl, Hanns-Christoph (Universität Innsbruck. Institut für Experimentalphysik und Zentrum für Quantenphysik (Austria))
Panda, Cristian (Northwestern University. Center for Fundamental Physics (USA))
Gabrielse, Gerald (Northwestern University. Center for Fundamental Physics (USA))
Miloglyadov, Eduard (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland))
Quack, Martin (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland))
Seyfang, Georg (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland))
Wichmann, Gunther (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland))
Ospelkaus, Silke (Leibniz Universität Hannover. Institut für Quantenoptik (Germany))
Kuhn, Axel (University of Oxford. Clarendon Laboratory (UK))
Longhi, Stefano (Politecnico di Milano. Dipartimento di Fisica (Italy))
Szameit, Alexander (University of Rostock. Institute for Physics (Germany))
Pirro, Philipp (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum OPTIMAS (Germany))
Hillebrands, Burkard (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum OPTIMAS (Germany))
Zhu, Xue-Feng (Huazhong University of Science and Technology. School of Physics and Wuhan National Laboratory for Optoelectronics (People's Republic of China))
Zhu, Jie (Hong Kong Polytechnic University. Department of Mechanical Engineering (People's Republic of China))
Drewsen, Michael (Aarhus University. Department of Physics and Astronomy (Denmark))
Hensinger, Winfried K. (University of Sussex. Sussex Centre for Quantum Technologies (UK))
Weidt, Sebastian (University of Sussex. Sussex Centre for Quantum Technologies (UK))
Halfmann, Thomas (Technical University of Darmstadt. Institute of Applied Physics (Germany))
Wang, Hai-Lin (University of Oregon. Department of Physics (USA))
Paraoanu, Gheorghe Sorin (Aalto University. Department of Applied Physics. QTF Centre of Excellence (Finland))
Vitanov, Nikolay V. (St Kliment Ohridski University of Sofia. Faculty of Physics (Bulgaria))
Mompart Penina, Jordi (Universitat Autònoma de Barcelona. Departament de Física)
Busch, Thomas (Okinawa Institute of Science and Technology Graduate University. Quantum Systems Unit (Japan))
Barnum, Timothy J. (Massachusetts Institute of Technology. Department of Chemistry (USA))
Grimes, David D. (Harvard-MIT Center for Ultracold Atoms (USA))
Field, Robert W. (Massachusetts Institute of Technology. Department of Chemistry (USA))
Raizen, Mark G. (University of Texas at Austin. Department of Physics. Center for Nonlinear Dynamics (USA))
Narevicius, Edvardas (Weizmann Institute of Science (Israel). Department of Chemical Physics)
Auzinsh, Marcis (University of Latvia. Department of Physics (Latvia))
Budker, Dmitry (University of California at Berkeley. Department of Physics (USA))
Pálffy, Adriana (Max Planck Institute for Nuclear Physics (Germany))
Keitel, Christoph H. (Max Planck Institute for Nuclear Physics (Germany))

Data: 2019
Resum: STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published in The Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e. g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.
Ajuts: Ministerio de Economía y Competitividad FIS2017-86530-P
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1646
European Commission 820314
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Stimulated Raman adiabatic passage (STIRAP) ; Ultracold molecules ; Parity violation ; Spin waves ; Acoustic waves ; Molecular Rydberg states ; Nuclear coherent population transfer
Publicat a: Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 52, Issue 20 (October 2019) , p. 202001, ISSN 1361-6455

DOI: 10.1088/1361-6455/ab3995


56 p, 4.4 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-06-03, darrera modificació el 2023-10-01



   Favorit i Compartir