Web of Science: 164 citations, Scopus: 180 citations, Google Scholar: citations,
ABINIT : overview and focus on selected capabilities
Romero, Aldo (West Virginia University. Physics and Astronomy Department)
Allan, Douglas (Corning Incorporated)
Amadon, Bernard (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Antonius, Gabriel (Université du Québec À Trois-Rivières)
Applencourt, Thomas (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Baguet, Lucas (Sorbonne Université)
Bieder, Jordan (Université de Liège)
Bottin, François (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Bouchet, Johann (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Bousquet, Eric (Université de Liège)
Bruneval, Fabien (Université Paris-Saclay)
Brunin, Guillaume (Institute of Condensed Matter and Nanoscience. UCLouvain)
Caliste, Damien (University Grenoble Alpes)
Côté, Michel (U. de Montréal)
Denier, Jules (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Dreyer, Cyrus (Center for Computational Quantum Physics. Flatiron Institute)
Ghosez, Philippe (Université de Liège)
Giantomassi, Matteo (European Theoretical Spectroscopy Facility)
Gillet, Yannick (Institute of Condensed Matter and Nanoscience. UCLouvain)
Gingras, Olivier (U. de Montréal)
Hamann, Donald R. (Mat-Sim Research LLC)
Hautier, Geoffroy (Institute of Condensed Matter and Nanoscience. UCLouvain)
Jollet, François (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Jomard, Gérald (CEA. DEN. DEC)
Martin, Alexander (Université de Liège)
Miranda, Henrique P. C. (Institute of Condensed Matter and Nanoscience. UCLouvain)
Naccarato, Francesco (Institute of Condensed Matter and Nanoscience. UCLouvain)
Petretto, Guido (Institute of Condensed Matter and Nanoscience. UCLouvain)
Pike, N. A. (Université de Liège)
Planes, Valentin (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Prokhorenko, Sergei (Université de Liège)
Rangel, Tonatiuh (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Ricci, Fabio (Université de Liège)
Rignanese, Gian-Marco (European Theoretical Spectroscopy Facility)
Royo Valls, Miquel (Institut de Ciència de Materials de Barcelona)
Stengel, Massimiliano (Institut de Ciència de Materials de Barcelona)
Torrent, Marc (Commissariat à l'Énergie Atomique et aux Énergies Alternatives (França))
Van Setten, Michiel J. (IMEC)
Van Troeye, Benoit (Rensselaer Polytechnic Institute)
Verstraete, Matthieu J. (Institut Català de Nanociència i Nanotecnologia)
Wiktor, Julia (Chalmers University of Technology)
Zwanziger, J. W. (Dalhousie Univeristy)
Gonze, Xavier (Skolkovo Institute of Science and Technology)

Date: 2020
Abstract: ABINIT is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.
Grants: Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1506
Ministerio de Economía y Competitividad SEV-2015-0496
Ministerio de Economía y Competitividad MAT2016-77100-C2-2-P
European Commission 724529
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Density functional perturbation theory ; Dynamical mean-field theory ; Electric field gradients ; Magnetic field perturbations ; Many body perturbation theory ; Projector augmented waves ; Strongly correlated materials ; Van Der Waals interactions
Published in: Journal of chemical physics, Vol. 152, Issue 12 (March 2020) , art. 124102, ISSN 1089-7690

DOI: 10.1063/1.5144261


Preprint
27 p, 1.9 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2020-07-27, last modified 2023-09-27



   Favorit i Compartir