Web of Science: 13 citations, Scopus: 15 citations, Google Scholar: citations,
Strain gradient mediated magnetoelectricity in Fe-Ga/P(VDF-TrFE) multiferroic bilayers integrated on silicon
Nicolenco, Aliona (Universitat Autònoma de Barcelona. Departament de Física)
Gómez, Andrés (Institut de Ciència de Materials de Barcelona)
Chen, Xiangzhong (Zurich Federal Polytechnic School. Institute of Robotics & Intelligent Systems (Switzerland))
Menéndez Dalmau, Enric (Universitat Autònoma de Barcelona. Departament de Física)
Fornell, Jordina (Universitat Autònoma de Barcelona. Departament de Física)
Pané i Vidal, Salvador (Zurich Federal Polytechnic School. Institute of Robotics & Intelligent Systems (Switzerland))
Pellicer Vilà, Eva Maria (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2020
Abstract: The primary advantage of magnetoelectric heterostructures exhibiting direct magnetoelectric effect is the possibility to induce and modulate the electrical response of the ferroelectric phase directly with an external magnetic field (i. e. , wirelessly, without applying electric field). Nevertheless, the magnetoelectric coupling in such heterostructures is commonly limited by substrate clamping which hinders effective strain propagation. In this work, 1 μm thick ferromagnetic Fe-Ga layers were electrodeposited onto rigid Si/Cu substrates and subsequently coated with ferroelectric P(VDF-TrFE). Under magnetic field, the (110) textured Fe-Ga alloy is compressed along the z-direction by 0. 033%, as demonstrated by X-ray diffraction. The experimental results suggest that while the bottom of the Fe-Ga layer is clamped, its air side exhibits a pronounced tetragonal deformation thanks to the residual nanoporosity existing between the columnar grains, that is, a strain gradient develops across the thickness of the Fe-Ga film. This strain gradient in Fe-Ga induces a change in the piezoresponse of the adjacent ferroelectric P(VDF-TrFE) layer. These results pave the way to the design of high-performance microelectromechanical systems (MEMS) with magnetoelectric response integrated on rigid substrates.
Grants: Ministerio de Economía y Competitividad MAT2017-86357-C3-1-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
European Commission 665919
European Commission 648454
Ministerio de Economía y Competitividad IJCI-2015-27030
European Commission 771565
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Magnetoelectricity ; Fe-Ga ; P(VDF-TrFE) ; Ferroelectric ; Magnetostriction ; Strain gradient
Published in: Applied materials today, Vol. 19 (June 2020) , art. 100579, ISSN 2352-9407

DOI: 10.1016/j.apmt.2020.100579


8 p, 1.6 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3) > SPIN-PORICS
Articles > Research articles
Articles > Published articles

 Record created 2020-10-27, last modified 2023-06-04



   Favorit i Compartir