Google Scholar: cites
Interfacial engineering of metal oxides for highly stable halide perovskite solar cells
Mingorance, Alba (Institut Català de Nanociència i Nanotecnologia)
Xie, Haibing (Institut Català de Nanociència i Nanotecnologia)
Kim, Hui-Seon (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Wang, Zaiwei (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Balsells, Marc (Institut Català de Nanociència i Nanotecnologia)
Morales Melgares, Anna (Institut Català de Nanociència i Nanotecnologia)
Domingo Marimon, Neus (Institut Català de Nanociència i Nanotecnologia)
Kazuteru, Nonomura (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Tress, Wolfgang (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Fraxedas, Jordi (Institut Català de Nanociència i Nanotecnologia)
Vlachopoulos, Nick (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Hagfeldt, Anders (École Polytechnique Fédérale de Lausanne. Institute of Chemical Sciences and Engineering)
Lira-Cantu, Monica (Institut Català de Nanociència i Nanotecnologia)

Data: 2018
Resum: Oxides employed in halide perovskite solar cells (PSCs) have already demonstrated to deliver enhanced stability, low cost, and the ease of fabrication required for the commercialization of the technology. The most stable PSCs configuration, the carbon-based hole transport layer-free PSC (HTL-free PSC), has demonstrated a stability of more than one year of continuous operation partially due to the dual presence of insulating oxide scaffolds and conductive oxides. Despite these advances, the stability of PSCs is still a concern and a strong limiting factor for their industrial implementation. The engineering of oxide interfaces functionalized with molecules (like self-assembly monolayers) or polymers results in the passivation of defects (traps), providing numerous advantages such as the elimination of hysteresis and the enhancement of solar cell efficiency. But most important is the beneficial effect of interfacial engineering on the lifetime and stability of PSCs. In this work, the authors provide a brief insight into the recent developments reported on the surface functionalization of oxide interfaces in PSCs with emphasis on the effect of device stability. This paper also discusses the different binding modes, their effect on defect passivation, band alignment or dipole formation, and how these parameters influence device lifetime.
Ajuts: Ministerio de Economía y Competitividad SEV-2013-0295
Ministerio de Economía y Competitividad ENE2016-79282-C5-2-R
Ministerio de Economía y Competitividad CTQ2016-81911-REDT
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-329
Nota: Altres ajuts: this work was carried out under the Materials Science Ph.D. Degree for A.M. of the Universitat Autònoma de Barcelona. H.-S.K. is grateful for the postdoctoral fellowship grant (NRF-2016R1A6A3A03012393). - The Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae) - Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya - European COST Action StableNextSol project MP1307.
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Matèria: Functionalization ; Halide perovskite solar cells ; Interfacial engineering ; Metal oxides ; Self-assembly monolayers ; Stability
Publicat a: Advanced materials interfaces, Vol. 5, issue 22 (Nov. 2018) , art. 1800367, ISSN 2196-7350

DOI: 10.1002/admi.201800367


Preprint
27 p, 958.3 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2021-04-26, darrera modificació el 2023-06-12



   Favorit i Compartir