Web of Science: 11 citations, Scopus: 11 citations, Google Scholar: citations
Strain-gradient effects in nanoscale-engineered magnetoelectric materials
Nicolenco, Aliona (Universitat Autònoma de Barcelona. Departament de Física)
de h-Óra, Muireann (University of Cambridge. Department of Materials Science and Metallurgy)
Driscoll, Judith (University of Cambridge. Department of Materials Science and Metallurgy)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2021
Abstract: Understanding strain gradient phenomena is of paramount importance in diverse areas of condensed matter physics. This effect is responsible for flexoelectricity in dielectric materials, and it plays a crucial role in the mechanical behavior of nanoscale-sized specimens. In magnetoelectric composites, which comprise piezoelectric or ferroelectric (FE) materials coupled to magnetostrictive (MS) phases, the strain gradient can add to any uniform strain that is present to boost the strength of the coupling. Hence, it could be advantageous to develop new types of functionally graded multiferroic composites (for information technologies) or magnetic-field-driven flexoelectric/magnetostrictive platforms for wireless neurons/muscle cell stimulation (in biomedicine). In MS or FE materials with non-fully constrained geometries (e. g. , cantilevers, porous layers, or vertically aligned patterned films), strain gradients can be generated by applying a magnetic field (to MS phases) or an electric field (to, e. g. , FE phases). While multiferroic composites operating using uniform strains have been extensively investigated in the past, examples of new nanoengineering strategies to achieve strain-gradient-mediated magnetoelectric effects that could ultimately lead to high flexomagnetoelectric effects are discussed in this Perspective.
Grants: European Commission 892661
European Commission 875018
European Commission 861145
European Commission 648454
Ministerio de Economía y Competitividad MAT2017-86357-C3-1-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
Agència de Gestió d'Ajuts Universitaris i de Recerca 2018/LLAV-00032
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Ferroelectric materials ; Multiferroics ; Condensed matter physics ; Magnetism ; Nanomaterials ; Information technology ; Dielectric materials ; Thin films ; Porous media
Published in: APL materials, Vol 9 (2021) , art. 020903, ISSN 2166-532X

DOI: 10.1063/5.0037421


Postprint
24 p, 1.1 MB

10 p, 3.1 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3) > SPIN-PORICS
Articles > Research articles
Articles > Published articles

 Record created 2021-06-14, last modified 2024-02-14



   Favorit i Compartir