Google Scholar: citations
Exploring the Potential of Using Carbonyl Sulfide to Track the Urban Biosphere Signal
Villalba, Gara (Universitat Autònoma de Barcelona. Institut de Ciència i Tecnologia Ambientals)
Whelan, Mary (Rutgers University. Department of Environmental Sciences)
Montzka, Stephen (Global Monitoring Laboratory)
Cameron-Smith, Philip (Lawrence Livermore National Laboratory)
Fischer, Marc (Lawrence Berkeley National Laboratory)
Zumkehr, Andrew (University of California)
Hilton, Timothy (University of California. Environmental Studies Department)
Stinecipher, James (University of California)
Baker, Ian (Colorado State University. Department of Atmospheric Science)
Bambha, Ray P. (Sandia National Laboratories)
Michelsen, Hope A. (University of Colorado Boulder. Department of Mechanical Engineering)
LaFranchi, Brian (Aclima)
Estruch, Carme (Universitat Autònoma de Barcelona. Institut de Ciència i Tecnologia Ambientals)
Campbell, Elliott (University of California. Environmental Studies Department)

Date: 2021
Abstract: Cities are implementing additional urban green as a means to capture CO and become more carbon neutral. However, cities are complex systems where anthropogenic and natural components of the CO budget interact with each other, and the ability to measure the efficacy of such measures is still not properly addressed. There is still a high degree of uncertainty in determining the contribution of the vegetation signal, which furthermore confounds the use of CO mole fraction measurements for inferring anthropogenic emissions of CO. Carbonyl sulfide (OCS) is a tracer of photosynthesis which can aid in constraining the biosphere signal. This study explores the potential of using OCS to track the urban biosphere signal. We used the Sulfur Transport and dEposition Model (STEM) to simulate the OCS concentrations and the Carnegie Ames Stanford Approach ecosystem model to simulate global CO fluxes over the Bay Area of San Francisco during March 2015. Two observation towers provided measurements of OCS and CO: The Sutro tower in San Francisco (upwind from the area of study providing background observations), and a tower located at Sandia National Laboratories in Livermore (downwind of the highly urbanized San Francisco region). Our results show that the STEM model works better under stable marine influence, and that the boundary layer height and entrainment are driving the diurnal changes in OCS and CO at the downwind Sandia site. However, the STEM model needs to better represent the transport and boundary layer variability, and improved estimates of gross primary productivity for characterizing the urban biosphere signal are needed.
Grants: European Commission 653950
European Commission 818002
Note: Unidad de excelencia María de Maeztu CEX2019-000940-M
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: Journal of Geophysical Research. Atmospheres, Vol. 126, Issue 13 (July 2021) , p. e2020JD034106, ISSN 2169-8996

DOI: 10.1029/2020jd034106


14 p, 1.8 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Institut de Ciència i Tecnologia Ambientals (ICTA)
Articles > Research articles
Articles > Published articles

 Record created 2021-09-08, last modified 2023-04-01



   Favorit i Compartir