Web of Science: 9 citations, Scopus: 10 citations, Google Scholar: citations,
Dynamic electric-field-induced magnetic effects in cobalt oxide thin films : towards magneto-ionic synapses
Martins, Sofia (Universitat Autònoma de Barcelona. Departament de Física)
de Rojas, Julius (Universitat Autònoma de Barcelona. Departament de Física)
Tan, Zhengwei (Universitat Autònoma de Barcelona. Departament de Física)
Cialone, Matteo (CNR-SPIN Genova)
Lopeandía Fernández, Aitor (Institut Català de Nanociència i Nanotecnologia)
Herrero-Martín, Javier (ALBA Laboratori de Llum de Sincrotró)
Costa-Krämer, José L. (Instituto de Micro y Nanotecnología)
Menéndez Dalmau, Enric (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2022
Abstract: Voltage control of magnetism via electric-field-driven ion migration (magneto-ionics) has generated intense interest due to its potential to greatly reduce heat dissipation in a wide range of information technology devices, such as magnetic memories, spintronic systems or artificial neural networks. Among other effects, oxygen ion migration in transition-metal-oxide thin films can lead to the generation or full suppression of controlled amounts of ferromagnetism ('ON-OFF' magnetic transitions) in a non-volatile and fully reversible manner. However, oxygen magneto-ionic rates at room temperature are generally considered too slow for industrial applications. Here, we demonstrate that sub-second ON-OFF transitions in electrolyte-gated paramagnetic cobalt oxide films can be achieved by drastically reducing the film thickness from >200 nm down to 5 nm. Remarkably, cumulative magneto-ionic effects can be generated by applying voltage pulses at frequencies as high as 100 Hz. Neuromorphic-like dynamic effects occur at these frequencies, including potentiation (cumulative magnetization increase), depression (i. e. , partial recovery of magnetization with time), threshold activation, and spike time-dependent magnetic plasticity (learning and forgetting capabilities), mimicking many of the biological synapse functions. The systems under investigation show features that could be useful for the design of artificial neural networks whose magnetic properties would be governed with voltage.
Grants: European Commission 861145
European Commission 648454
European Commission 875018
Agencia Estatal de Investigación MAT2017-86357-C3-1-R
Agencia Estatal de Investigación PID2020-116844RB-C21
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
Agència de Gestió d'Ajuts Universitaris i de Recerca 2018/LLAV-00032
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Published in: Nanoscale, Vol. 14, Issue 3 (January 2022) , p. 842-852, ISSN 2040-3372

DOI: 10.1039/D1NR06210G
PMID: 34985078


Postprint
21 p, 859.4 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3) > SPIN-PORICS
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > The ALBA Synchrotron
Articles > Research articles
Articles > Published articles

 Record created 2022-01-11, last modified 2023-12-04



   Favorit i Compartir