Web of Science: 6 cites, Scopus: 6 cites, Google Scholar: cites,
Rotated domains in selective area epitaxy grown ZnP : formation mechanism and functionality
Spadaro, Maria Chiara (Institut Català de Nanociència i Nanotecnologia)
Escobar Steinvall, Simon (Ecole Polytechnique Fédérale de Lausanne. Laboratory of Semiconductor Materials)
Dzade, Nelson Y. (Pennsylvania State University. Department of Energy and Mineral Engineering)
Martí-Sánchez, Sara (Institut Català de Nanociència i Nanotecnologia)
Torres-Vila, Pol (Institut Català de Nanociència i Nanotecnologia)
Stutz, Elias Z. (Ecole Polytechnique Fédérale de Lausanne. Laboratory of Semiconductor Materials)
Zamani, Mahdi (Ecole Polytechnique Fédérale de Lausanne. Laboratory of Semiconductor Materials)
Paul, Rajrupa (Ecole Polytechnique Fédérale de Lausanne. Laboratory of Semiconductor Materials)
Leran, Jean-Baptiste (Ecole Polytechnique Fédérale de Lausanne. Laboratory of Semiconductor Materials)
Fontcuberta i Morral, Anna (Ecole Polytechnique Fédérale de Lausanne. Laboratory of Semiconductor Materials)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)

Data: 2021
Resum: Zinc phosphide (ZnP) is an ideal absorber candidate for solar cells thanks to its direct bandgap, earth-abundance, and optoelectronic characteristics, albeit it has been insufficiently investigated due to limitations in the fabrication of high-quality material. It is possible to overcome these factors by obtaining the material as nanostructures, e. g. via the selective area epitaxy approach, enabling additional strain relaxation mechanisms and minimizing the interface area. We demonstrate that ZnP nanowires grow mostly defect-free when growth is oriented along the [100] and [110] of the crystal, which is obtained in nanoscale openings along the [110] and [010] on InP(100). We detect the presence of two stable rotated crystal domains that coexist in the structure. They are due to a change in the growth facet, which originates either from the island formation and merging in the initial stages of growth or lateral overgrowth. These domains have been visualized through 3D atomic models and confirmed with image simulations of the atomic scale electron micrographs. Density functional theory simulations describe the rotated domains' formation mechanism and demonstrate their lattice-matched epitaxial relation. In addition, the energies of the shallow states predicted closely agree with transition energies observed by experimental studies and offer a potential origin for these defect transitions. Our study represents an important step forward in the understanding of ZnP and thus for the realisation of solar cells to respond to the present call for sustainable photovoltaic technology.
Ajuts: Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad SEV-2017-0706
European Commission 754510
European Commission 823717
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Nanoscale, Vol. 13, Issue 44 (November 2021) , p. 18441-18450, ISSN 2040-3372

DOI: 10.1039/d1nr06190a
PMID: 34751695


10 p, 4.7 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2022-05-17, darrera modificació el 2022-09-11



   Favorit i Compartir