Google Scholar: cites
Solution processable direct bandgap copper-silver-bismuth iodide photovoltaics : compositional control of dimensionality and optoelectronic properties
Pai, Narendra (Monash University. Department of Chemical Engineering)
Chatti, Manjunath (Monash University. School of Chemistry)
Fürer, Sebastian O. (Monash University. Department of Chemical Engineering)
Scully, Andrew D. (CSIRO Manufacturing)
Raga, Sonia (Institut Català de Nanociència i Nanotecnologia)
Rai, Nitish (Monash University. Department of Chemical Engineering)
Tan, Boer (Monash University. Department of Chemical Engineering)
Chesman, Anthony S. R. (CSIRO Manufacturing)
Xu, Zhou (Monash University. Monash Centre for Electron Microscopy)
Rietwyk, Kevin J. (Monash University. Department of Chemical Engineering)
Reddy, Saripally Sudhaker (The Australian Centre for Advanced Photovoltaics)
Hora, Yvonne (Monash University. Department of Chemical Engineering)
Sepalage, Gaveshana A. (Monash University. Department of Chemical Engineering)
Glück, Nadja (The Australian Centre for Advanced Photovoltaics)
Lira-Cantu, Monica (Institut Català de Nanociència i Nanotecnologia)
Bach, Udo (Monash University. Department of Chemical Engineering)
Simonov, Alexandr N. (Monash University. School of Chemistry)

Data: 2022
Resum: The search for lead-free alternatives to lead-halide perovskite photovoltaic materials resulted in the discovery of copper(I)-silver(I)-bismuth(III) halides exhibiting promising properties for optoelectronic applications. The present work demonstrates a solution-based synthesis of uniform CuAgBiI thin films and scrutinizes the effects of x on the phase composition, dimensionality, optoelectronic properties, and photovoltaic performance. Formation of pure 3D CuAgBiI at x = 1, 2D CuAgBiI at x = 2, and a mix of the two at 1 < x < 2 is demonstrated. Despite lower structural dimensionality, CuAgBiI has broader optical absorption with a direct bandgap of 1. 89 ± 0. 05 eV, a valence band level at -5. 25 eV, improved carrier lifetime, and higher recombination resistance as compared to CuAgBiI. These differences are mirrored in the power conversion efficiencies of the CuAgBiI and CuAgBiI solar cells under 1 sun of 1. 01 ± 0. 06% and 2. 39 ± 0. 05%, respectively. The latter value is the highest reported for this class of materials owing to the favorable film morphology provided by the hot-casting method. Future performance improvements might emerge from the optimization of the CuAgBiI layer thickness to match the carrier diffusion length of ≈40-50 nm. Nonencapsulated CuAgBiI solar cells display storage stability over 240 days.
Nota: Altres ajuts: SRR acknowledges the support from "laCaixa" Foundation (ID 100010434; LCF/BQ/PI20/11760024). Open access publishing facilitated by Monash University, as part of the Wiley - Monash University agreement via the Council of Australian University Librarians.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: CuAgBiI5 ; Cu2AgBiI6 ; Solar cells ; Thin film
Publicat a: Advanced Energy Materials, Vol. 12, issue 32 (August 2022) , art. 2201482, ISSN 1614-6840

DOI: 10.1002/aenm.202201482


16 p, 4.8 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2022-10-07, darrera modificació el 2022-10-21



   Favorit i Compartir