Google Scholar: citations
From Binary to Ternary Transition-Metal Nitrides : A Boost toward Nitrogen Magneto-Ionics
Tan, Zhengwei (Universitat Autònoma de Barcelona. Departament de Física)
Martins, Sofia (Universitat Autònoma de Barcelona. Departament de Física)
Escobar, Michael (Universitat Autònoma de Barcelona. Departament de Física)
de Rojas, Julius (Universitat Autònoma de Barcelona. Departament de Física)
Ibrahim, Fatima (University of Grenoble Alpes)
Chshiev, Mairbek (Institut Universitaire de France)
Quintana Puebla, Alberto (Institut de Ciència de Materials de Barcelona)
Lopeandía Fernández, Aitor (Institut Català de Nanociència i Nanotecnologia)
Costa-Krämer, José L. (Instituto de Micro y Nanotecnología)
Menéndez Dalmau, Enric (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2022
Abstract: Magneto-ionics is an emerging actuation mechanism to control the magnetic properties of materials via voltage-driven ion motion. This effect largely relies on the strength and penetration of the induced electric field into the target material, the amount of generated ion transport pathways, and the ionic mobility inside the magnetic media. Optimizing all these factors in a simple way is a huge challenge, although highly desirable for technological applications. Here, we demonstrate that the introduction of suitable transition-metal elements to binary nitride compounds can drastically boost magneto-ionics. More specifically, we show that the attained magneto-ionic effects in CoN films (i. e. , saturation magnetization, toggling speeds, and cyclability) can be drastically enhanced through 10% substitution of Co by Mn in the thin-film composition. Incorporation of Mn leads to transformation from nanocrystalline into amorphous-like structures, as well as from metallic to semiconducting behaviors, resulting in an increase of N-ion transport channels. Ab initio calculations reveal a lower energy barrier for CoMn-N compared to Co-N that provides a fundamental understanding of the crucial role of Mn addition in the voltage-driven magnetic effects. These results constitute an important step forward toward enhanced voltage control of magnetism via electric field-driven ion motion.
Grants: European Commission 875018
European Commission 861145
European Commission 824096
Agencia Estatal de Investigación PID2020-116844RB-C21
Agencia Estatal de Investigación PDC2021-121276-C31
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
Ministerio de Economía y Competitividad CSIC13-4E-1794
Ministerio de Ciencia e Innovación CEX2019-000917-S
Agencia Estatal de Investigación FJC2019-039780-I
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Magnetoelectricity ; Voltage control of magnetism (VCM) ; Magneto-ionics ; Transition metal nitride ; Ion diffusion
Published in: ACS applied materials & interfaces, Vol. 14, Issue 39 (May 2022) , p. 44581-44590, ISSN 1944-8252

DOI: 10.1021/acsami.2c12847
PMID: 36129787


10 p, 4.9 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3)
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2022-11-09, last modified 2023-09-18



   Favorit i Compartir