Google Scholar: cites
Enhancement of proximity-induced superconductivity in a planar Ge hole gas
Aggarwal, Kushagra (Institute of Science and Technology Austria)
Hofmann, Andrea (Institute of Science and Technology Austria)
Jirovec, D (Institute of Science and Technology Austria)
Prieto, Ivan (Institute of Science and Technology Austria)
Sammak, Amir (QuTech and Netherlands Organisation for Applied Scientific Research)
Botifoll, Marc (Institut Català de Nanociència i Nanotecnologia)
Martí-Sánchez, Sara (Institut Català de Nanociència i Nanotecnologia)
Veldhorst, Menno (QuTech and Kavli Institute of Nanoscience)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Scappucci, Giordano (QuTech and Kavli Institute of Nanoscience)
Danon, Jeroen (Norwegian University of Science and Technology. Department of Physics)
Katsaros, Georgios (Institute of Science and Technology Austria)

Data: 2021
Resum: Hole gases in planar germanium can have high mobilities in combination with strong spin-orbit interaction and electrically tunable g factors, and are therefore emerging as a promising platform for creating hybrid superconductor-semiconductor devices. A key challenge towards hybrid Ge-based quantum technologies is the design of high-quality interfaces and superconducting contacts that are robust against magnetic fields. In this work, by combining the assets of aluminum, which provides good contact to the Ge, and niobium, which has a significant superconducting gap, we demonstrate highly transparent low-disordered JoFETs with relatively large ICRN products that are capable of withstanding high magnetic fields. We furthermore demonstrate the ability of phase-biasing individual JoFETs, opening up an avenue to explore topological superconductivity in planar Ge. The persistence of superconductivity in the reported hybrid devices beyond 1. 8 T paves the way towards integrating spin qubits and proximity-induced superconductivity on the same chip.
Ajuts: European Commission 862046
European Commission 844511
European Commission 823717
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Nota: Altres ajuts: ICN2 is funded by the CERCA Programme/Generalitat de Catalunya. M.B. acknowledges support from SUR Generalitat de Catalunya and the EU Social Fund; project ref. 2020 FI 00103.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: High magnetic fields ; High-quality interface ; Proximity-induced superconductivity ; Quantum technologies ; Spin orbit interactions ; Superconducting contacts ; Superconducting gaps ; Superconductor-semiconductor devices
Publicat a: Physical Review Research, Vol. 3, issue 2 (April-June 2021) , art. L022005, ISSN 2643-1564

DOI: 10.1103/PhysRevResearch.3.L022005


12 p, 7.5 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2022-11-15, darrera modificació el 2024-02-14



   Favorit i Compartir