Google Scholar: citations
Motion analysis and real-time trajectory prediction of magnetically steerable catalytic Janus micromotors
Wu, Jiaen (ETH Zürich. Institute of Robotics and Intelligent Systems)
Folio, David (University of Orleans. INSA Centre Val de Loire)
Zhu, Jiawei (ETH Zürich. Institute of Robotics and Intelligent Systems)
Jang, Bumjin (Hanyang University. Department of Robotics)
Chen, Xiangzhong (ETH Zürich. Institute of Robotics and Intelligent Systems)
Feng, Junxiao (ETH Zurich. Department of Materials)
Gambardella, Pietro (ETH Zurich. Department of Materials)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)
Puigmartí-Luis, Josep (Institut de Química Teòrica i Computacional. Departament de Ciència dels Materials i Química Física)
Ergeneman, Olgac (ETH Zürich. Institute of Robotics and Intelligent Systems)
Ferreira, Antoine (University of Orleans. INSA Centre Val de Loire)
Pané i Vidal, Salvador (ETH Zürich. Institute of Robotics and Intelligent Systems)

Date: 2022
Abstract: Chemically driven micromotors display unpredictable trajectories due to the rotational Brownian motion interacting with the surrounding fluid molecules. This hampers the practical applications of these tiny robots, particularly where precise control is a requisite. To overcome the rotational Brownian motion and increase motion directionality, robots are often decorated with a magnetic composition and guided by an external magnetic field. However, despite the straightforward method, explicit analysis and modeling of their motion have been limited. Here, catalytic Janus micromotors are fabricated with distinct magnetizations and a controlled self-propelled motion with magnetic steering is shown. To analyze their dynamic behavior, a dynamic model that can successfully predict the trajectory of micromotors in uniform viscous flows in real time by incorporating a form of state-dependent-coefficient with a robust two-stage Kalman filter is theoretically developed. A good agreement is observed between the theoretically predicted dynamics and experimental observations over a wide range of model parameter variations. The developed model can be universally adopted to various designs of catalytic micro-/nanomotors with different sizes, geometries, and materials, even in diverse fuel solutions. Finally, the proposed model can be used as a platform for biosensing, detecting fuel concentration, or determining small-scale motors' propulsion mechanisms in an unknown environment.
Grants: European Commission 764977
Agencia Estatal de Investigación PID2020-116844RB-C22
Agencia Estatal de Investigación PID2020-116844RB-C21
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-0292
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Bubble recoil propulsion ; Catalytic swimmers ; Directionality control ; Magnetic Janus particles ; Real-time trajectory prediction
Published in: Advanced Intelligent Systems, Vol. 4, Issue 11 (November 2022) , art. 2200192, ISSN 2640-4567

DOI: 10.1002/aisy.202200192


11 p, 2.1 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3)
Articles > Research articles
Articles > Published articles

 Record created 2023-02-14, last modified 2023-10-01



   Favorit i Compartir