Google Scholar: citations
Disentangling phonon channels in nanoscale heat transport
Mukherjee, Samik (École Polytechnique de Montréal. Département de génie physique)
Wajs, Marcin (École Polytechnique de Montréal. Département de génie physique)
De La Mata, Maria (Institut Català de Nanociència i Nanotecnologia)
Givan, Uri (Max Planck Institute of Microstructure Physics)
Senz, Stephan (Max Planck Institute of Microstructure Physics)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Francoeur, Sebastien (École Polytechnique de Montréal. Département de génie physique)
Moutanabbir, Oussama (École Polytechnique de Montréal. Département de génie physique)

Date: 2021
Abstract: Phonon surface scattering has been at the core of heat transport engineering in nanoscale devices. Herein, we demonstrate that this phonon pathway can be the sole mechanism only below a critical, size-dependent temperature. Above this temperature, the lattice phonon scattering coexists along with surface effects. By tailoring the mass disorder at the atomic level, the lattice dynamics in nanowires was artificially controlled without affecting morphology, crystallinity, chemical composition, or electronic properties, thus allowing the mapping of the temperature-thermal conductivity-diameter triple parameter space. This led to the identification of the critical temperature below which the effects of lattice mass disorder are suppressed to an extent that phonon transport becomes governed entirely by the surface. This behavior is discussed based on a modified Landauer-Datta-Lundstrom near-equilibrium transport model. Besides disentangling the main phonon scattering mechanisms, the established framework also provides the necessary input to further advance the design and modeling of heat transport in semiconductor nanoscale systems.
Grants: Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad SEV-2017-0706
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Chemical compositions ; Critical temperatures ; Design and modeling ; Equilibrium transport ; Nano-scale system ; Nanoscale device ; Nanoscale heat transports ; Phonon-scattering mechanisms
Published in: Physical review B, Vol. 104, issue 7 (August 2021) , art. 75429, ISSN 2469-9969

DOI: 10.1103/PhysRevB.104.075429


Preprint
37 p, 2.3 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2023-02-16, last modified 2023-05-09



   Favorit i Compartir