Google Scholar: citations
Regulating oxygen ion transport at the nanoscale to enable highly cyclable magneto-ionic control of magnetism
Tan, Zhengwei (Universitat Autònoma de Barcelona. Departament de Física)
Ma, Zheng (Universitat Autònoma de Barcelona. Departament de Física)
Fuentes-Rodríguez, Laura (Institut de Ciència de Materials de Barcelona)
Liedke, Maciej Oskar (Institute of Radiation Physics)
Butterling, Maik (Institute of Radiation Physics)
Attallah, Ahmed (Institute of Radiation Physics)
Hirschmann, Eric (Institute of Radiation Physics)
Wagner, Andreas (Helmholtz-Zentrum Dresden−Rossendorf. Institute of Radiation Physics)
Abad, Llibertat (Institut de Microelectrònica de Barcelona)
Casañ Pastor, Nieves (Institut de Ciència de Materials de Barcelona)
Lopeandía Fernández, Aitor (Institut Català de Nanociència i Nanotecnologia)
Menéndez Dalmau, Enric (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2023
Abstract: Magneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties to (i) withstand high electric fields without electric pinholes and (ii) maintain stable ion transport during long-term actuation. In turn, the use of liquid electrolytes can result in poor cyclability, thus limiting their applicability. Here we propose a nanoscale-engineered magneto-ionic architecture (comprising a thin solid electrolyte in contact with a liquid electrolyte), that drastically enhances cyclability while preserving sufficiently high electric fields to trigger ion motion. Specifically, we show that the insertion of a highly nanostructured (amorphous-like) Ta layer (with suitable thickness and electric resistivity) between a magneto-ionic target material (i. e. , Co3O4) and the liquid electrolyte, increases magneto-ionic cyclability from < 30 cycles (when no Ta is inserted) to more than 800 cycles. Transmission electron microscopy together with variable energy positron annihilation spectroscopy reveal the crucial role of the generated TaOx interlayer as a solid-electrolyte (i. e. , ionic conductor) that improves magneto-ionic endurance by proper tuning of the types of voltage-driven structural defects. The Ta layer is very effective in trapping oxygen and hindering O2- ions from moving into the liquid electrolyte, thus keeping O2- motion mainly restricted between Co3O4 and Ta when voltage of alternating polarity is applied. We demonstrate that this approach provides a suitable strategy to boost magneto-ionics by combining the benefits of solid and liquid electrolytes in a synergetic manner.
Grants: European Commission 861145
Ministerio de Ciencia e Innovación CEX2019-000917-S
Agencia Estatal de Investigación PID2021-123276OB-I00
Agencia Estatal de Investigación PID2020-116844RB-C21
Agencia Estatal de Investigación PDC2021-121276-C31
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00651
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Magneto-electricity ; Voltage control of magnetism ; Magneto-ionics ; Transition metal oxide ; Ion diffusion
Published in: ACS nano, Vol. 17, Num. 17 (March 2023) , p. 6973-6984, ISSN 1936-086X
Related work: Tan, Zhengwei; Ma, Zheng; Fuentes-Rodriguez, Laura; Liedke, Maciej O.; Butterling, Maik; Attallah, Ahmed G.; Hirschmann, Eric; Wagner, Andreas; Abad, Llibertat; Casañ-Pastor, Nieves; Lopeandía Fernández, Aitor; Menéndez Dalmau, Enric; Sort Viñas, Jordi, 2023, "Dataset for "Regulating oxygen ion transport at the nanoscale to enable highly cyclable magneto-ionic control of magnetism"", CORA.Repositori de Dades de Recerca, V1 https://doi.org/10.34810/data688

DOI: 10.1021/acsnano.3c01105
PMID: 36972329


12 p, 6.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2023-03-24, last modified 2024-02-16



   Favorit i Compartir