Google Scholar: citations
Enhanced Proliferation and Differentiation of Human Osteoblasts by Remotely Controlled Magnetic-Field-Induced Electric Stimulation Using Flexible Substrates
Careta, Oriol (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Nicolenco, Aliona (Universitat Autònoma de Barcelona. Departament de Física)
Perdikos, Filippos (Institut Català de Nanociència i Nanotecnologia)
Blanquer Jerez, Andreu (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Ibañez, Elena (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Pellicer Vilà, Eva Maria (Universitat Autònoma de Barcelona. Departament de Física)
Stefani, Christina (Universitat Autònoma de Barcelona. Departament de Física)
Sepúlveda, Borja (Instituto de Microelectrónica de Barcelona)
Nogués, Josep (Institut Català de Nanociència i Nanotecnologia)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)
Nogués, C. (Carme) (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)

Date: 2023
Abstract: With the progressive aging of the population, bone fractures are an increasing major health concern. Diverse strategies are being studied to reduce the recovery times using nonaggressive treatments. Electrical stimulation (either endogenous or externally applied electric pulses) has been found to be effective in accelerating bone cell proliferation and differentiation. However, the direct insertion of electrodes into tissues can cause undesirable inflammation or infection reactions. As an alternative, magnetoelectric heterostructures (wherein magnetic fields are applied to induce electric polarization) could be used to achieve electric stimulation without the need for implanted electrodes. Here, we develop a magnetoelectric platform based on flexible kapton/FeGa/P(VDF-TrFE) (flexible substrate/magnetostrictive layer/ferroelectric layer) heterostructures for remote magnetic-field-induced electric field stimulation of human osteoblast cells. We show that the use of flexible supports overcomes the clamping effects that typically occur when analogous magnetoelectric structures are grown onto rigid substrates (which preclude strain transfer from the magnetostrictive to the ferroelectric layers). The study of the diverse proliferation and differentiation markers evidence that in all the stages of bone formation (cell proliferation, extracellular matrix maturation, and mineralization), the electrical stimulation of the cells results in a remarkably better performance. The results pave the way for novel strategies for remote cell stimulation based on flexible platforms not only in bone regeneration but also in many other applications where electrical cell stimulation may be beneficial (e. g. , neurological diseases or skin regeneration).
Grants: European Commission 801370
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00651
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00122
Agencia Estatal de Investigación PID2020-116844RB-C21
Agencia Estatal de Investigación PID2020 116844RB-C22
Agencia Estatal de Investigación PID2019-106229RB-I00
European Commission 101054687
European Commission 892661
European Commission 861145
European Commission 861046
Agencia Estatal de Investigación CEX2021-001214-S
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Magnetoelectric heterostructure ; Flexible biomaterial ; Magnetoelectric stimulation ; Wireless actuation ; Proliferation ; Differentiation ; Osteoblasts
Published in: ACS applied materials & interfaces, Vol. 15, Issue 50 (December 2023) , p. 58054-58066, ISSN 1944-8252

DOI: 10.1021/acsami.3c09428
PMID: 38051712


13 p, 9.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3)
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2024-01-25, last modified 2024-05-04



   Favorit i Compartir